Traccia del 9 febbraio 2026

1.

(@) Sia a = ¢° = 7' un generatore del gruppo ciclico {(¢) N (t). Dal confronto tra le orbite di 4
sotto I'azione delle potenze di ¢ e di 7 si deduce che 2|t. Dal confronto tra le orbite di 10 si deduce
inoltre che 2|t. Quindi s = 2h, t = 2k, per opportuni interi &1,k e il sottogruppo cercato &
(6?) N (T?), dove

a2 = (1,3,2)(4,6,5)(7,9,8)(10, 12, 14)(11, 13, 15)(16, 18)(17, 19).
72 = (1,2,3)(4,5,6)(7,8,9)(10, 14, 12)(11, 15, 13)(16, 17)(18, 19).

Dal confronto tra le orbite di 16 sotto |'azione delle potenze di ¢ e di T si ricava ancora che 2|/ e
2|k. Quindi il sottogruppo cercato & (%) N (t*), dove

ot =(1,3,2)4,6,5)(7,9,8)(10,12,14)(11, 13, 15).
™ =(1,2,3)4,5,6)(7,8,9)(10, 14, 12)(11, 15, 13).

Poiché queste permutazioni sono una l'inversa dell'altra, generano lo stesso sottogruppo. Quindi il
sottogruppo cercato & (o*) = (7*), di ordine 3.

(b) Con o e con T commutano le seguenti permutazioni:
« a=(1,2,3), che & un ciclo di ¢ e l'inverso di un ciclo di 7;
« f=(4,56)7,8,9),in quanto & il prodotto di due cicli di ¢ ed & il quadrato del ciclo
(4,7,5,8,6,9) di 7.

Al sottogruppo C(0) N C(t) appartengono dunque a, f3, insieme al loro prodotto af. Queste sono
tre permutazioni di periodo 3. Poiché 3 > ¢(3) = 2, cio esclude che C(c) N C(7) sia ciclico.

2.

(a) In base alla seconda formulazione del Teorema cinese del resto, il gruppo Z.15 X Z.», € ciclico,
essendo 15 e 22 coprimi. Precisamente, & generato da ([1]y5,[1]o;). Di conseguenza, ogni
omomorfismo di gruppi @ :Zi5XZy —2ZyXZs & univocamente determinato da
©([1]15, [1]22) = (a0, B). Infatti, dalla conservazione dei multipli segue che, per ogni n € Z,
@([nlys, [n]ly) = (na, np). Si puod facilmente verificare che, per ogni scelta di («, 8), si ottiene
un'applicazione ben definita. Risulta, inoltre, che Im¢ ¢ il sottogruppo di Z, X Zs5 generato da
(a, B). Pertanto, ¢ & un epimorfismo se e solo se {(a,)) = Z, X Zs. Ora, Z, X Zs, che &
isomorfo a Z,, ha esattamente quattro generatori, e dunque, quattro sono le scelte per (a, f),
precisamente

(a, ) € {([1]2, [1]5), ([112,[2]5), (1112, [3]5), ([1l2, [4]5)}-

Quattro sono dunque gli epimorfismi richiesti.

(b) Sia Y:Z3X 725 —> Loy X Zg un monomorfismo di anelli. Poiché &, in particolare, un
monomorfismo di gruppi additivi, conserva il periodo di ogni elemento. Inoltre, conservando il
prodotto, invia elementi idempotenti in elementi idempotenti. Dunque ([1]3,[0]15) sara un
elemento idempotente dell'anello Zy, X Z¢ avente periodo 3, mentre ([0]3, [1]15) sara un
elemento idempotente avente periodo 15. Ora, gli elementi di Z,, aventi periodo 3 sono [8],4 €
[16],4. Poiché 16% — 16 = 240, I'elemento [16],4 & idempotente nell'anello Z,,. Possiamo anche



constatare che [16]4) & idempotente nell'anello Z, oltre ad essere un elemento di Z4, avente

periodo 15. Se poniamo ¥([1]5, [0]5) = ([16].4, [0]¢o), ¥([0]5, [1]15) = ([0],4, [16]¢). otterremo
I'omomorfismo di gruppi definito da: Y([als, [bl15) = ([16a]4, [16b]6o) per ogni a, b € Z. Questo,
come si puo facilmente verificare, € ben definito, ha nucleo banale e conserva il prodotto, ed &
dunque un monomorfismo di anelli.

() Un sottogruppo di Zg X Zgy avente ordine 12 & H = Z; X {[40]gy). L'applicazione
W:2ZgXLgy— Ly X Zey tale che, per ogni a,be Z,w([als, [blsg) = ([blag, [0]lep) €& un
omomorfismo di gruppi ben definito avente H come nucleo.

3.
(a) Siha g(x) = (x” - x)2. Inoltre

fx) = X —x = (kP —xP) +1 = (x —x)p2 — (¥ —x)p + 1.

Poiché p > 2, ne consegue che il resto cercato & il polinomio costante r(x) = 1.

-\
(a) Osserviamo che g(x) = H (x — a)?. Notiamo inoltre che h(x) = (x2 + 1) . Dato che g(x) si
a€Z,
decompone nel prodotto di fattori lineari, g(x) e h(x) saranno coprimi se x> + 1 non possiede fattori
lineari, in altri termini, tenendo conto del primo corollario al Teorema di Ruffini;

1) se x2 + 1 non ammette radici in Z,, allora MCD(g(x), h(x)) = 1.

Supponiamo adesso che x? +1 ammetta radici a1,y € Zp. In tal caso si decompone nel
prodotto (x — a1)(x —ap). Ora, x— a1 compare nella fattorizzazione di g(x) con molteplicita 2,
mentre h(x) = (x — a1)P(x — a,)P. Si noti, perd che, se a; = @y, allora x> +1= (x —aq)?. Si
distinguono pertanto i seguenti due casi:

2) se x2 + 1 ha una radice doppia, allora MCD(g(x), h(x)) = x2 + 1;

_ \2
3) se x2 + 1 ha due radici semplici, allora MCD(g(x), h(x)) = (x2 + 1) .
Osserviamo anzitutto che 2) vale per p =2. Per p > 2, x? +1 ha radici se e solo se esiste

a € Zp tale che a? = — T, ossia se e solo se esiste un elemento di ‘U(Zp) avente periodo 4.
Poiché ‘U(Zp) € un gruppo ciclico, cid equivale alla condizione che 4 divida p—1, ossia
p = 1(mod 4). Intal caso, le radici 1, &; sono distinte, in quanto sono i due elementi di periodo
4 in ‘L{(ZP) (sono, per altro, una I'opposta dell'altra). In tal caso vale 3). In conclusione, 1) vale se
4 non divide p — 1, ossiase p = 3 (mod 4).



